指底互换比大小,取对同构用单调。
【例1】比较\({9^{10}}\)与\({10^9}\)的大小.
【解析】设\(a = {9^{10}}\),\(b = {10^9}\),直接计算比较复杂,也不是通法。
复杂指数问题常用的手段是取对数。即:\(\ln a = 10\ln 9\),\(\ln b = 9\ln 10\)
下面化为同构:\(\dfrac{{\ln a}}{{90}} = \dfrac{{\ln 9}}{9},\dfrac{{\ln b}}{{90}} = \dfrac{{\ln 10}}{{10}}\)
构造函数:\(f(x) = \dfrac{{\ln x}}{x}(x>0)\),则\(f'(x) = \dfrac{{\dfrac{1}{x} \cdot x – \ln x}}{{{x^2}}} = \dfrac{{1 – \ln x}}{{{x^2}}}\)
注意到,\(1 – \ln x\)在\((0, + \infty )\)上单调递减,且零点为\(e\)
故当\(0<x<e\)时,\(1 – \ln x>0\),\(f'(x)>0\),\(f(x)\)单调递增;
当\(x>e\)时,\(1 – \ln x<0\),\(f'(x)<0\),\(f(x)\)单调递减.
\(\because e<9<10,\therefore f(9)>f(10)\),即\(\dfrac{{\ln 9}}{9}>\dfrac{{\ln 10}}{{10}}\)
故\(\dfrac{{\ln a}}{{90}}>\dfrac{{\ln b}}{{90}}\),从而\(a>b\)
【变式】比较\({3^\pi }\)与\({\pi ^3}\)的大小.
【分析】令\(a = {3^\pi },b = {\pi ^3}\),取对数得\(\ln a = \pi \ln 3,\ln b = 3\ln \pi \)
化为同构:\( \dfrac{{\ln a}}{{3\pi }} = \dfrac{{\ln 3}}{3},\dfrac{{\ln b}}{{3\pi }} = \dfrac{{\ln \pi }} {\pi }, \)由【例1】函数的单调性及\(e<3<\pi \)可知,\(f(3)>f(\pi )\)
从而\(a>b\).
原创文章,作者:leopold,如若转载,请注明出处:https://www.math211.com/2021/02/14/232/