奔驰定理与三角形四心

一、奔驰定理

奔驰定理与三角形四心

设点\(O\)是\(\Delta ABC\)所在平面上且与\(A,B,C\)不重合的一点,若则

\( {S_{\Delta OBC}} \cdot \overrightarrow {OA} + {S_{\Delta OAC}} \cdot \overrightarrow {OB} + {S_{\Delta OAB}} \cdot \overrightarrow {OC} = \overrightarrow 0 \)

奔驰定理与三角形四心

【推导】​\( \dfrac{{AO}}{{OD}} = \dfrac{{{S_{\Delta OAB}}}}{{{S_{\Delta OBD}}}} = \dfrac{{{S_{\Delta OAC}}}}{{{S_{\Delta OCD}}}} = \dfrac{{{S_{\Delta OAB}} + {S_{\Delta OAC}}}}{{{S_{\Delta OBC}}}} \)

\( \dfrac{{BD}}{{DC}} = \dfrac{{{S_{\Delta ABD}}}}{{{S_{\Delta ACD}}}} = \dfrac{{{S_{\Delta OBD}}}}{{{S_{\Delta OCD}}}} = \dfrac{{{S_{\Delta ABD}} – {S_{\Delta OBD}}}}{{{S_{\Delta ACD}} – {S_{\Delta OCD}}}} = \dfrac{{{S_{\Delta OAB}}}}{{{S_{\Delta OAC}}}} \)

\( \therefore \overrightarrow {AO} = \dfrac{{{S_{\Delta OAB}} + {S_{\Delta OAC}}}}{{{S_{\Delta OBC}}}}\overrightarrow {OD} , \)

\( \overrightarrow {OD} = \dfrac{{{S_{\Delta OAC}}}}{{{S_{\Delta OAB}} + {S_{\Delta OAC}}}}\overrightarrow {OB} + \dfrac{{{S_{\Delta OAB}}}}{{{S_{\Delta OAB}} + {S_{\Delta OAC}}}}\overrightarrow {OC} \)​​.

\( \therefore \overrightarrow {AO} = \dfrac{{{S_{\Delta OAC}}\overrightarrow {OB} + {S_{\Delta OAB}}\overrightarrow {OC} }}{{{S_{\Delta OBC}}}} \)​,

即​\( {S_{\Delta OBC}} \cdot \overrightarrow {OA} + {S_{\Delta OAC}} \cdot \overrightarrow {OB} + {S_{\Delta OAB}} \cdot \overrightarrow {OC} = \overrightarrow 0 \)

二、三角形四心

奔驰定理\({S_{\Delta OBC}} \cdot \overrightarrow {OA} + {S_{\Delta OAC}} \cdot \overrightarrow {OB} + {S_{\Delta OAB}} \cdot \overrightarrow {OC} = \overrightarrow 0 \)的四种应用:

奔驰定理与三角形四心

应用一:\(O\)为重心时,\({S_{\Delta OBC}}:{S_{\Delta OAC}}:{S_{\Delta OAB}} = 1:1:1\)
故\(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow 0 \Leftrightarrow O\)是\(\Delta ABC\)的重心

奔驰定理与三角形四心

应用二:\(O\)为内心时,\({S_{\Delta OBC}}:{S_{\Delta OAC}}:{S_{\Delta OAB}} = (\dfrac{1}{2}ar):(\dfrac{1}{2}br):(\dfrac{1}{2}cr) = a:b:c\)
故\(a \cdot \overrightarrow {OA} + b \cdot \overrightarrow {OB} + c \cdot \overrightarrow {OC} = \overrightarrow 0 \Leftrightarrow O\)是\(\Delta ABC\)的内心
\(\sin A \cdot \overrightarrow {OA} + \sin B \cdot \overrightarrow {OB} + \sin C \cdot \overrightarrow {OC} = \overrightarrow 0 \Leftrightarrow O\)是\(\Delta ABC\)的内心

奔驰定理与三角形四心

应用三:\(O\)为外心时,
\[\begin{array}{l}
{S_{\Delta OBC}}:{S_{\Delta OAC}}:{S_{\Delta OAB}}\\
= (\dfrac{1}{2}{R^2}\sin \angle BOC):(\dfrac{1}{2}{R^2}\sin \angle AOC):(\dfrac{1}{2}{R^2}\sin \angle AOB)\\
= \sin 2A:\sin 2B:\sin 2C
\end{array}\]

故\(\sin 2A \cdot \overrightarrow {OA} + \sin 2B \cdot \overrightarrow {OB} + \sin 2C \cdot \overrightarrow {OC} = \overrightarrow 0 \Leftrightarrow O\)是\(\Delta ABC\)的外心

奔驰定理与三角形四心

应用四:\(O\)为垂心时,
\[\begin{array}{l}
{S_{\Delta OBC}}:{S_{\Delta OAC}} = (\dfrac{1}{2}OC \cdot BF):(\dfrac{1}{2}OC \cdot AF)\\
= BF:AF = (\dfrac{{BF}}{{CF}}):(\dfrac{{AF}}{{CF}}) = (\dfrac{1}{{\tan B}}):(\dfrac{1}{{\tan A}}) = \tan A:\tan B
\end{array}\]

故\({S_{\Delta OBC}}:{S_{\Delta OAC}}:{S_{\Delta OAB}} = \tan A:\tan B:\tan C\)

故\(\tan A \cdot \overrightarrow {OA} + \tan B \cdot \overrightarrow {OB} + \tan C \cdot \overrightarrow {OC} = \overrightarrow 0 \Leftrightarrow O\)是\(\Delta ABC\)的垂心

三、与四心有关的轨迹

奔驰定理与三角形四心

【应用一】​\( AP\)​为中线,则​\(BP:PC = 1:1\)

​\( (1)\overrightarrow {AP}  = \dfrac{1}{2}\overrightarrow {AB}  + \dfrac{1}{2}\overrightarrow {AC}  = \dfrac{1}{2}(\overrightarrow {AB}  + \overrightarrow {AC} ) = \lambda (\overrightarrow {AB}  + \overrightarrow {AC} )\)

​\( \begin{array}{c} (2)\overrightarrow {AP}  = \dfrac{{AH}}{2}(\dfrac{{\overrightarrow {AB} }}{{AH}} + \dfrac{{\overrightarrow {AC} }}{{AH}}) = \dfrac{{AH}}{2}(\dfrac{{\overrightarrow {AB} }}{{c\sin B}} + \dfrac{{\overrightarrow {AC} }}{{b\sin C}})\\ = \lambda (\dfrac{{\overrightarrow {AB} }}{{\left| {\overrightarrow {AB} } \right|\sin B}} + \dfrac{{\overrightarrow {AC} }}{{\left| {\overrightarrow {AC} } \right|\sin C}}) \end{array} \)

【例1】(1)若\(\overrightarrow {OP} = \overrightarrow {OA} + \lambda (\overrightarrow {AB} + \overrightarrow {AC} )\)(\(\lambda >0\)),则点\(P\)的轨迹一定通过\(\Delta ABC\)的______心.
(2)若​\( \overrightarrow {OP} = \overrightarrow {OA} + \lambda (\dfrac{{\overrightarrow {AB} }}{{\left| {\overrightarrow {AB} } \right|\sin B}} + \dfrac{{\overrightarrow {AC} }}{{\left| {\overrightarrow {AC} } \right|\sin C}}) \)​(\(\lambda >0\)),则点\(P\)的轨迹一定通过\(\Delta ABC\)的______心.

【解析】(1)\(\overrightarrow {OP} = \overrightarrow {OA} + \lambda (\overrightarrow {AB} + \overrightarrow {AC} ) \Leftrightarrow \overrightarrow {AP} = \lambda (\overrightarrow {AB} + \overrightarrow {AC} )\)

因此\(P\)在线段\(BC\)中线所在直线上,即点\(P\)的轨迹一定通过\(\Delta ABC\)的重心.

(2)\(\overrightarrow {AP} = \lambda (\dfrac{{\overrightarrow {AB} }}{{\left| {\overrightarrow {AB} } \right|\sin B}} + \dfrac{{\overrightarrow {AC} }}{{\left| {\overrightarrow {AC} } \right|\sin C}})\)

由正弦定理可知\(|\overrightarrow {AB} |\sin B = |\overrightarrow {AC} |\sin C\),从而\[\overrightarrow {AP} = \dfrac{\lambda }{{\left| {\overrightarrow {AB} } \right|\sin B}}(\overrightarrow {AB} + \overrightarrow {AC} )\]

因此\(P\)在线段\(BC\)中线所在直线上,即点\(P\)的轨迹一定通过\(\Delta ABC\)的重心.

奔驰定理与三角形四心

【应用二】\(AP\)为角平分线:\(BP:PC = c:b\)

\(\begin{array}{c}
\overrightarrow {AP} = \dfrac{b}{{b + c}}\overrightarrow {AB} + \dfrac{c}{{b + c}}\overrightarrow {AC} = \dfrac{{bc}}{{b + c}}(\dfrac{{\overrightarrow {AB} }}{c} + \dfrac{{\overrightarrow {AC} }}{b})\\
= \lambda (\dfrac{{\overrightarrow {AB} }}{{\left| {\overrightarrow {AB} } \right|}} + \dfrac{{\overrightarrow {AC} }}{{\left| {\overrightarrow {AC} } \right|}})
\end{array}\)

【例2】若\(\overrightarrow {OP} = \overrightarrow {OA} + \lambda (\dfrac{{\overrightarrow {AB} }}{{\left| {\overrightarrow {AB} } \right|}} + \dfrac{{\overrightarrow {AC} }}{{\left| {\overrightarrow {AC} } \right|}})\)(\(\lambda >0\)),则点\(P\)的轨迹一定通过\(\Delta ABC\)的______心.

【解析】\(\overrightarrow {AP} = \lambda (\dfrac{{\overrightarrow {AB} }}{{\left| {\overrightarrow {AB} } \right|}} + \dfrac{{\overrightarrow {AC} }}{{\left| {\overrightarrow {AC} } \right|}})\),\(\dfrac{{\overrightarrow {AB} }}{{\left| {\overrightarrow {AB} } \right|}},\dfrac{{\overrightarrow {AC} }}{{\left| {\overrightarrow {AC} } \right|}}\)都是单位向量,

因此\(\dfrac{{\overrightarrow {AB} }}{{\left| {\overrightarrow {AB} } \right|}} + \dfrac{{\overrightarrow {AC} }}{{\left| {\overrightarrow {AC} } \right|}}\)表示菱形的对角线,从而点\(P\)在\(\angle BAC\)的平分线上

即点\(P\)的轨迹一定通过\(\Delta ABC\)的_内心.

奔驰定理与三角形四心

【应用三】\(AP\)为高:\(BP:PC = \tan C:\tan B\)
\(\begin{array}{c}
\overrightarrow {AP} = \dfrac{{\tan B}}{{\tan B + \tan C}}\overrightarrow {AB} + \dfrac{{\tan C}}{{\tan B + \tan C}}\overrightarrow {AC} \\
= \dfrac{1}{{\tan B + \tan C}}(\dfrac{{\sin B}}{{\cos B}}\overrightarrow {AB} + \dfrac{{\sin C}}{{\cos C}}\overrightarrow {AC} )
\end{array}\)
\( = \dfrac{{bc}}{{2R(\tan B + \tan C)}}(\dfrac{{\overrightarrow {AB} }}{{c\cos B}} + \dfrac{{\overrightarrow {AC} }}{{b\cos C}}) \)

\( = \lambda (\dfrac{{\overrightarrow {AB} }}{{\left| {\overrightarrow {AB} } \right|\cos B}} + \dfrac{{\overrightarrow {AC} }}{{\left| {\overrightarrow {AC} } \right|\cos C}})\)

【例3】(1)若\(\overrightarrow {OP} = \overrightarrow {OA} + \lambda (\dfrac{{\overrightarrow {AB} }}{{\left| {\overrightarrow {AB} } \right|\cos B}} + \dfrac{{\overrightarrow {AC} }}{{\left| {\overrightarrow {AC} } \right|\cos C}})\)(\(\lambda >0\)),则点\(P\)的轨迹一定通过\(\Delta ABC\)的______心.
(2)若\(\overrightarrow {OP} = \dfrac{{\overrightarrow {OB} + \overrightarrow {OC} }}{2} + \lambda (\dfrac{{\overrightarrow {AB} }}{{\left| {\overrightarrow {AB} } \right|\cos B}} + \dfrac{{\overrightarrow {AC} }}{{\left| {\overrightarrow {AC} } \right|\cos C}})\)(\(\lambda >0\)),则点\(P\)一定通过\(\Delta ABC\)的______心.

【解析】(1)注意到\(\left| {\overrightarrow {AB} } \right|\cos B,\left| {\overrightarrow {AC} } \right|\cos C\)都是向量的投影,如果分子为数量积,则可约分

于是,两边同“乘”一个向量,根据\(B,C\)为向量夹角可知,应同“乘”\(\overrightarrow {BC} \)

\(\overrightarrow {OP} = \overrightarrow {OA} + \lambda (\dfrac{{\overrightarrow {AB} }}{{\left| {\overrightarrow {AB} } \right|\cos B}} + \dfrac{{\overrightarrow {AC} }}{{\left| {\overrightarrow {AC} } \right|\cos C}})\)

\(\Leftrightarrow \overrightarrow {AP} = \lambda (\dfrac{{\overrightarrow {AB} }}{{\left| {\overrightarrow {AB} } \right|\cos B}} + \dfrac{{\overrightarrow {AC} }}{{\left| {\overrightarrow {AC} } \right|\cos C}})\)

\(\begin{array}{c}
\overrightarrow {AP} \bullet \overrightarrow {BC} = \lambda (\dfrac{{\overrightarrow {AB} \bullet  \overrightarrow {BC} }}{{\left| {\overrightarrow {AB} } \right|\cos B}} + \dfrac{{\overrightarrow {AC} \bullet \overrightarrow {BC} }}{{\left| {\overrightarrow {AC} } \right|\cos C}})\\
= \lambda (\dfrac{{|\overrightarrow {AB} | \cdot |\overrightarrow {BC} |\cos (\pi – B)}}{{\left| {\overrightarrow {AB} } \right|\cos B}} + \dfrac{{|\overrightarrow {AC} | \cdot |\overrightarrow {BC} |\cos C}}{{\left| {\overrightarrow {AC} } \right|\cos C}})\\
= \lambda ( – |\overrightarrow {BC} | + |\overrightarrow {BC} ) = 0
\end{array}\)

故\(\overrightarrow {OP} \bot \overrightarrow {BC} \),即\(P\)在\(BC\)边高所在直线上

从而点\(P\)的轨迹一定通过\(\Delta ABC\)的垂心

(2)\(\overrightarrow {BP} + \overrightarrow {CP} = + \lambda (\dfrac{{\overrightarrow {AB} }}{{\left| {\overrightarrow {AB} } \right|\cos B}} + \dfrac{{\overrightarrow {AC} }}{{\left| {\overrightarrow {AC} } \right|\cos C}})\)

同(1)可得\((\overrightarrow {BP} + \overrightarrow {CP} ) \bullet \overrightarrow {BC} = 0\),设\(\overrightarrow {BP} + \overrightarrow {CP} = \mu \overrightarrow {PD} \),则\(\overrightarrow {PD} \bot \overrightarrow {BC} \)

即\(PD\)为线段\(BC\)的垂直平分线

从而点\(P\)一定通过\(\Delta ABC\)的外心

原创文章,作者:leopold,如若转载,请注明出处:https://www.math211.com/2021/02/10/70/

(49)
上一篇 2021年2月10日
下一篇 2021年2月10日

相关推荐