一、奔驰定理
设点\(O\)是\(\Delta ABC\)所在平面上且与\(A,B,C\)不重合的一点,若则
\( {S_{\Delta OBC}} \cdot \overrightarrow {OA} + {S_{\Delta OAC}} \cdot \overrightarrow {OB} + {S_{\Delta OAB}} \cdot \overrightarrow {OC} = \overrightarrow 0 \)
【推导】\( \dfrac{{AO}}{{OD}} = \dfrac{{{S_{\Delta OAB}}}}{{{S_{\Delta OBD}}}} = \dfrac{{{S_{\Delta OAC}}}}{{{S_{\Delta OCD}}}} = \dfrac{{{S_{\Delta OAB}} + {S_{\Delta OAC}}}}{{{S_{\Delta OBC}}}} \)
\( \dfrac{{BD}}{{DC}} = \dfrac{{{S_{\Delta ABD}}}}{{{S_{\Delta ACD}}}} = \dfrac{{{S_{\Delta OBD}}}}{{{S_{\Delta OCD}}}} = \dfrac{{{S_{\Delta ABD}} – {S_{\Delta OBD}}}}{{{S_{\Delta ACD}} – {S_{\Delta OCD}}}} = \dfrac{{{S_{\Delta OAB}}}}{{{S_{\Delta OAC}}}} \)
\( \therefore \overrightarrow {AO} = \dfrac{{{S_{\Delta OAB}} + {S_{\Delta OAC}}}}{{{S_{\Delta OBC}}}}\overrightarrow {OD} , \)
\( \overrightarrow {OD} = \dfrac{{{S_{\Delta OAC}}}}{{{S_{\Delta OAB}} + {S_{\Delta OAC}}}}\overrightarrow {OB} + \dfrac{{{S_{\Delta OAB}}}}{{{S_{\Delta OAB}} + {S_{\Delta OAC}}}}\overrightarrow {OC} \).
\( \therefore \overrightarrow {AO} = \dfrac{{{S_{\Delta OAC}}\overrightarrow {OB} + {S_{\Delta OAB}}\overrightarrow {OC} }}{{{S_{\Delta OBC}}}} \),
即\( {S_{\Delta OBC}} \cdot \overrightarrow {OA} + {S_{\Delta OAC}} \cdot \overrightarrow {OB} + {S_{\Delta OAB}} \cdot \overrightarrow {OC} = \overrightarrow 0 \)
二、三角形四心
奔驰定理\({S_{\Delta OBC}} \cdot \overrightarrow {OA} + {S_{\Delta OAC}} \cdot \overrightarrow {OB} + {S_{\Delta OAB}} \cdot \overrightarrow {OC} = \overrightarrow 0 \)的四种应用:
应用一:\(O\)为重心时,\({S_{\Delta OBC}}:{S_{\Delta OAC}}:{S_{\Delta OAB}} = 1:1:1\)
故\(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow 0 \Leftrightarrow O\)是\(\Delta ABC\)的重心
应用二:\(O\)为内心时,\({S_{\Delta OBC}}:{S_{\Delta OAC}}:{S_{\Delta OAB}} = (\dfrac{1}{2}ar):(\dfrac{1}{2}br):(\dfrac{1}{2}cr) = a:b:c\)
故\(a \cdot \overrightarrow {OA} + b \cdot \overrightarrow {OB} + c \cdot \overrightarrow {OC} = \overrightarrow 0 \Leftrightarrow O\)是\(\Delta ABC\)的内心
\(\sin A \cdot \overrightarrow {OA} + \sin B \cdot \overrightarrow {OB} + \sin C \cdot \overrightarrow {OC} = \overrightarrow 0 \Leftrightarrow O\)是\(\Delta ABC\)的内心
应用三:\(O\)为外心时,
\[\begin{array}{l}
{S_{\Delta OBC}}:{S_{\Delta OAC}}:{S_{\Delta OAB}}\\
= (\dfrac{1}{2}{R^2}\sin \angle BOC):(\dfrac{1}{2}{R^2}\sin \angle AOC):(\dfrac{1}{2}{R^2}\sin \angle AOB)\\
= \sin 2A:\sin 2B:\sin 2C
\end{array}\]
故\(\sin 2A \cdot \overrightarrow {OA} + \sin 2B \cdot \overrightarrow {OB} + \sin 2C \cdot \overrightarrow {OC} = \overrightarrow 0 \Leftrightarrow O\)是\(\Delta ABC\)的外心
应用四:\(O\)为垂心时,
\[\begin{array}{l}
{S_{\Delta OBC}}:{S_{\Delta OAC}} = (\dfrac{1}{2}OC \cdot BF):(\dfrac{1}{2}OC \cdot AF)\\
= BF:AF = (\dfrac{{BF}}{{CF}}):(\dfrac{{AF}}{{CF}}) = (\dfrac{1}{{\tan B}}):(\dfrac{1}{{\tan A}}) = \tan A:\tan B
\end{array}\]
故\({S_{\Delta OBC}}:{S_{\Delta OAC}}:{S_{\Delta OAB}} = \tan A:\tan B:\tan C\)
故\(\tan A \cdot \overrightarrow {OA} + \tan B \cdot \overrightarrow {OB} + \tan C \cdot \overrightarrow {OC} = \overrightarrow 0 \Leftrightarrow O\)是\(\Delta ABC\)的垂心
三、与四心有关的轨迹
【应用一】\( AP\)为中线,则\(BP:PC = 1:1\)
\( (1)\overrightarrow {AP} = \dfrac{1}{2}\overrightarrow {AB} + \dfrac{1}{2}\overrightarrow {AC} = \dfrac{1}{2}(\overrightarrow {AB} + \overrightarrow {AC} ) = \lambda (\overrightarrow {AB} + \overrightarrow {AC} )\)
\( \begin{array}{c} (2)\overrightarrow {AP} = \dfrac{{AH}}{2}(\dfrac{{\overrightarrow {AB} }}{{AH}} + \dfrac{{\overrightarrow {AC} }}{{AH}}) = \dfrac{{AH}}{2}(\dfrac{{\overrightarrow {AB} }}{{c\sin B}} + \dfrac{{\overrightarrow {AC} }}{{b\sin C}})\\ = \lambda (\dfrac{{\overrightarrow {AB} }}{{\left| {\overrightarrow {AB} } \right|\sin B}} + \dfrac{{\overrightarrow {AC} }}{{\left| {\overrightarrow {AC} } \right|\sin C}}) \end{array} \)
【例1】(1)若\(\overrightarrow {OP} = \overrightarrow {OA} + \lambda (\overrightarrow {AB} + \overrightarrow {AC} )\)(\(\lambda >0\)),则点\(P\)的轨迹一定通过\(\Delta ABC\)的______心.
(2)若\( \overrightarrow {OP} = \overrightarrow {OA} + \lambda (\dfrac{{\overrightarrow {AB} }}{{\left| {\overrightarrow {AB} } \right|\sin B}} + \dfrac{{\overrightarrow {AC} }}{{\left| {\overrightarrow {AC} } \right|\sin C}}) \)(\(\lambda >0\)),则点\(P\)的轨迹一定通过\(\Delta ABC\)的______心.
【解析】(1)\(\overrightarrow {OP} = \overrightarrow {OA} + \lambda (\overrightarrow {AB} + \overrightarrow {AC} ) \Leftrightarrow \overrightarrow {AP} = \lambda (\overrightarrow {AB} + \overrightarrow {AC} )\)
因此\(P\)在线段\(BC\)中线所在直线上,即点\(P\)的轨迹一定通过\(\Delta ABC\)的重心.
(2)\(\overrightarrow {AP} = \lambda (\dfrac{{\overrightarrow {AB} }}{{\left| {\overrightarrow {AB} } \right|\sin B}} + \dfrac{{\overrightarrow {AC} }}{{\left| {\overrightarrow {AC} } \right|\sin C}})\)
由正弦定理可知\(|\overrightarrow {AB} |\sin B = |\overrightarrow {AC} |\sin C\),从而\[\overrightarrow {AP} = \dfrac{\lambda }{{\left| {\overrightarrow {AB} } \right|\sin B}}(\overrightarrow {AB} + \overrightarrow {AC} )\]
因此\(P\)在线段\(BC\)中线所在直线上,即点\(P\)的轨迹一定通过\(\Delta ABC\)的重心.
【应用二】\(AP\)为角平分线:\(BP:PC = c:b\)
\(\begin{array}{c}
\overrightarrow {AP} = \dfrac{b}{{b + c}}\overrightarrow {AB} + \dfrac{c}{{b + c}}\overrightarrow {AC} = \dfrac{{bc}}{{b + c}}(\dfrac{{\overrightarrow {AB} }}{c} + \dfrac{{\overrightarrow {AC} }}{b})\\
= \lambda (\dfrac{{\overrightarrow {AB} }}{{\left| {\overrightarrow {AB} } \right|}} + \dfrac{{\overrightarrow {AC} }}{{\left| {\overrightarrow {AC} } \right|}})
\end{array}\)
【例2】若\(\overrightarrow {OP} = \overrightarrow {OA} + \lambda (\dfrac{{\overrightarrow {AB} }}{{\left| {\overrightarrow {AB} } \right|}} + \dfrac{{\overrightarrow {AC} }}{{\left| {\overrightarrow {AC} } \right|}})\)(\(\lambda >0\)),则点\(P\)的轨迹一定通过\(\Delta ABC\)的______心.
【解析】\(\overrightarrow {AP} = \lambda (\dfrac{{\overrightarrow {AB} }}{{\left| {\overrightarrow {AB} } \right|}} + \dfrac{{\overrightarrow {AC} }}{{\left| {\overrightarrow {AC} } \right|}})\),\(\dfrac{{\overrightarrow {AB} }}{{\left| {\overrightarrow {AB} } \right|}},\dfrac{{\overrightarrow {AC} }}{{\left| {\overrightarrow {AC} } \right|}}\)都是单位向量,
因此\(\dfrac{{\overrightarrow {AB} }}{{\left| {\overrightarrow {AB} } \right|}} + \dfrac{{\overrightarrow {AC} }}{{\left| {\overrightarrow {AC} } \right|}}\)表示菱形的对角线,从而点\(P\)在\(\angle BAC\)的平分线上
即点\(P\)的轨迹一定通过\(\Delta ABC\)的_内心.
【应用三】\(AP\)为高:\(BP:PC = \tan C:\tan B\)
\(\begin{array}{c}
\overrightarrow {AP} = \dfrac{{\tan B}}{{\tan B + \tan C}}\overrightarrow {AB} + \dfrac{{\tan C}}{{\tan B + \tan C}}\overrightarrow {AC} \\
= \dfrac{1}{{\tan B + \tan C}}(\dfrac{{\sin B}}{{\cos B}}\overrightarrow {AB} + \dfrac{{\sin C}}{{\cos C}}\overrightarrow {AC} )
\end{array}\)
\( = \dfrac{{bc}}{{2R(\tan B + \tan C)}}(\dfrac{{\overrightarrow {AB} }}{{c\cos B}} + \dfrac{{\overrightarrow {AC} }}{{b\cos C}}) \)
\( = \lambda (\dfrac{{\overrightarrow {AB} }}{{\left| {\overrightarrow {AB} } \right|\cos B}} + \dfrac{{\overrightarrow {AC} }}{{\left| {\overrightarrow {AC} } \right|\cos C}})\)
【例3】(1)若\(\overrightarrow {OP} = \overrightarrow {OA} + \lambda (\dfrac{{\overrightarrow {AB} }}{{\left| {\overrightarrow {AB} } \right|\cos B}} + \dfrac{{\overrightarrow {AC} }}{{\left| {\overrightarrow {AC} } \right|\cos C}})\)(\(\lambda >0\)),则点\(P\)的轨迹一定通过\(\Delta ABC\)的______心.
(2)若\(\overrightarrow {OP} = \dfrac{{\overrightarrow {OB} + \overrightarrow {OC} }}{2} + \lambda (\dfrac{{\overrightarrow {AB} }}{{\left| {\overrightarrow {AB} } \right|\cos B}} + \dfrac{{\overrightarrow {AC} }}{{\left| {\overrightarrow {AC} } \right|\cos C}})\)(\(\lambda >0\)),则点\(P\)一定通过\(\Delta ABC\)的______心.
【解析】(1)注意到\(\left| {\overrightarrow {AB} } \right|\cos B,\left| {\overrightarrow {AC} } \right|\cos C\)都是向量的投影,如果分子为数量积,则可约分
于是,两边同“乘”一个向量,根据\(B,C\)为向量夹角可知,应同“乘”\(\overrightarrow {BC} \)
\(\overrightarrow {OP} = \overrightarrow {OA} + \lambda (\dfrac{{\overrightarrow {AB} }}{{\left| {\overrightarrow {AB} } \right|\cos B}} + \dfrac{{\overrightarrow {AC} }}{{\left| {\overrightarrow {AC} } \right|\cos C}})\)
\(\Leftrightarrow \overrightarrow {AP} = \lambda (\dfrac{{\overrightarrow {AB} }}{{\left| {\overrightarrow {AB} } \right|\cos B}} + \dfrac{{\overrightarrow {AC} }}{{\left| {\overrightarrow {AC} } \right|\cos C}})\)
\(\begin{array}{c}
\overrightarrow {AP} \bullet \overrightarrow {BC} = \lambda (\dfrac{{\overrightarrow {AB} \bullet \overrightarrow {BC} }}{{\left| {\overrightarrow {AB} } \right|\cos B}} + \dfrac{{\overrightarrow {AC} \bullet \overrightarrow {BC} }}{{\left| {\overrightarrow {AC} } \right|\cos C}})\\
= \lambda (\dfrac{{|\overrightarrow {AB} | \cdot |\overrightarrow {BC} |\cos (\pi – B)}}{{\left| {\overrightarrow {AB} } \right|\cos B}} + \dfrac{{|\overrightarrow {AC} | \cdot |\overrightarrow {BC} |\cos C}}{{\left| {\overrightarrow {AC} } \right|\cos C}})\\
= \lambda ( – |\overrightarrow {BC} | + |\overrightarrow {BC} ) = 0
\end{array}\)
故\(\overrightarrow {OP} \bot \overrightarrow {BC} \),即\(P\)在\(BC\)边高所在直线上
从而点\(P\)的轨迹一定通过\(\Delta ABC\)的垂心
(2)\(\overrightarrow {BP} + \overrightarrow {CP} = + \lambda (\dfrac{{\overrightarrow {AB} }}{{\left| {\overrightarrow {AB} } \right|\cos B}} + \dfrac{{\overrightarrow {AC} }}{{\left| {\overrightarrow {AC} } \right|\cos C}})\)
同(1)可得\((\overrightarrow {BP} + \overrightarrow {CP} ) \bullet \overrightarrow {BC} = 0\),设\(\overrightarrow {BP} + \overrightarrow {CP} = \mu \overrightarrow {PD} \),则\(\overrightarrow {PD} \bot \overrightarrow {BC} \)
即\(PD\)为线段\(BC\)的垂直平分线
从而点\(P\)一定通过\(\Delta ABC\)的外心
原创文章,作者:leopold,如若转载,请注明出处:https://www.math211.com/2021/02/10/70/