对数卡值有妙招,放大倍数低幂夹。
两对若是同真底,底除真来用均值。
比较大小的最基本方法是作差比较,对于指数、对数比较大小,一般是用单调性或利用中间量传递。
【例1】(2020•新课标Ⅲ)设\(a = {\log _3}2\),\(b = {\log _5}3\),\(c = \dfrac{2}{3}\),则( )
A.\(a<c<b\) B.\(a<b<c\) C.\(b<c<a\) D.\(c<a<b\)
【解析】由于对数不同底,无法用单调性,可以考虑确定每个值的大致范围
需要用\(3\)的方幂来夹\(2\),\(5\)的方幂来夹\(3\)。直接夹比较粗糙,难以比较,我们可以使用“放大镜”。
\(3a = 3{\log _3}2 = {\log _3}8<{\log _3}{3^2} = 2 \Leftrightarrow a<\dfrac{2}{3}\)
\(3b = 3{\log _5}3 = {\log _5}27>{\log _5}{5^2} = 2 \Leftrightarrow b>\dfrac{2}{3}\)
从而\(a<c<b\),选A
【点评】如果还无法比较大小,说明放大倍数不够,可以乘更高的倍数。
【例2】(2020•新课标Ⅲ)已知\({5^5}<{8^4}\),\({13^4}<{8^5}\),设\(a = {\log _5}3\),\(b = {\log _8}5\),\(c = {\log _{13}}8\),则( )
A.\(a<b<c\) B.\(b<a<c\) C.\(b<c<a\) D.\(c<a<b\)
【解析】使用放大镜确定每个值较为精确的范围:
\(5b = 5{\log _8}5 = {\log _8}{5^5}<{\log _8}{8^4} = 4 \Rightarrow b<\dfrac{4}{5}\)
\(5c = 5{\log _{13}}8 = {\log _{13}}{8^5}>{\log _{13}}{13^4} = 4 \Rightarrow c>\dfrac{4}{5}\)
故\(b<c\)
下面比较\(a,b\)的大小:
思路一:注意到\(a\)的底数与\(b\)的真数相同,若两式相除,则可变为同底
\(\dfrac{a}{b} = \dfrac{{{{\log }_5}3}}{{{{\log }_8}5}} = {\log _5}3 \cdot {\log _5}8<{(\dfrac{{{{\log }_5}3 + {{\log }_5}8}}{2})^2} = {(\dfrac{{{{\log }_5}24}}{2})^2}<{(\dfrac{2}{2})^2} = 1\)
从而\(a<b<c\)
思路二:\(4a = 4{\log _5}3 = {\log _5}81<{\log _5}125 = 3 \Rightarrow a<\dfrac{3}{4}\)
\(4b = 4{\log _8}5 = {\log _8}625>{\log _8}512 = 3 \Rightarrow b>\dfrac{3}{4}\)
从而\(a<b<c\)
思路三:\(5b = 5{\log _8}5 = {\log _8}{5^5} = {\log _8}3125\)
\({2^{11}}<3125<{2^{12}} \Rightarrow \dfrac{{11}}{3} = {\log _{{2^3}}}{2^{11}} = {\log _8}{2^{11}}<5b<{\log _8}{2^{12}} = 4\)
\(\therefore \dfrac{{11}}{{15}}<b<\dfrac{4}{5}\)
\(5c = 5{\log _{13}}8 = {\log _{13}}{8^5}>{\log _{13}}{13^4} = 4 \Rightarrow c>\dfrac{4}{5}\)
\(5a = 5{\log _5}3 = {\log _5}243<{\log _5}(125\sqrt 5 ) = \dfrac{7}{2} \Rightarrow a<\dfrac{7}{{10}}\)
\( \therefore \dfrac{7}{{10}} = \dfrac{{105}}{{150}}<\dfrac{{110}}{{150}} = \dfrac{{11}}{{15}} \)
\(\therefore a<b<c\),选A
原创文章,作者:leopold,如若转载,请注明出处:https://www.math211.com/2021/02/10/72/